Comparing emotion feature extraction approaches
for predicting depression and anxiety
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Feature importance
differs between
depression and anxiety

* Random Forest models trained w/ 80-20
data split (by patient), binary targets (PHQ-
9>10: major depressive disorder, MDD; GAD-
7>10: general anxiety disorder, GAD), using

GoEmotions
captures clinically
relevant nuance

Mixed-effects linear regressions
showed significant associations and
high R2s. Findings reflect current

Background

* Counseling is informed by patient symptoms

* Emotional state changes are symptoms;
differ by emotion (e.g. pride), not just
sentiment (pos./neg.)

* Patient-generated text from digital mental
health services can be used to develop

automatic assessments via measuring understanding:
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GoEmotions features

Positive and negative emotion features
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LIWC non-emo 0.577 0.413 0.525 0.341 (0.549 0.290 0.478 0.209

patients collected via Talkspace (Hull et al.,
2020)

* Patients and clinicians gave consent; IRB
approved; data handled securely.
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Comparable features similarly associated

* Obtainable from all 3 sources: anger, sadness, positive & negative emotion

* Significant associations between these features and the PHQ-9/GAD-7 scores, and
comparable predictive power (measured in R2).

* LIWC emotion features performed well, indicating that these features remain a good
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All three 0.671 0.520 0.612 0.453 |0.657 0.456 0.567 0.382

Summary

1. LIWC’s emotion features are as predictive as
GoEmotions features - still a good choice.

choice, e.g. if computational constraints preclude NN models.
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Future work: Clinical decision support
tools. Interpretability is key: models based
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