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Mental health
• ~20% of U.S. adults 

experience mental illness

• In counseling or therapy:
2019 9.5%
2020 10.1%



Sentiment vs. Emotions 

https://ai.googleblog.com/2021/10/goemotions-dataset-for-fine-grained.html

This text expresses several emotions at once, including 
excitement, approval, and gratitude

This text expresses relief, a complex emotion 
conveying both positive and negative sentiment

This text conveys remorse, a complex emotion that is expressed 
frequently but is not captured by simple models of emotion



Message-based 
therapy

• >337,000 messages from 
message-based therapy sessions 
from >6,500 clients collected via 
Talkspace (Hull et al., 2020) 

• 13,000 documents labeled with 
PHQ-9 and GAD-7 scores 

• Patients and clinicians gave 
consent; IRB approved; data 
handled securely.



Linguistic Inquiry and Word Count (LIWC) 
(Pennebaker et al., 2007)

• Counts words belonging to pre-defined categories

• Has been used to measure depression levels in social media posts, 
therapy conversations, and other written texts

• Obtained categories with a known relationship to anxiety/depression 
(Tausczik and Pennebaker, 2010): first-person singular pronouns (“I”), 
first-person plural pronouns (“we”), bio, health, sadness, anxiety, 
anger, positive emotion, and negative emotion.



GoEmotions (Demszky et al., 2020)

• BERT-based emotion classifier pipeline 

• trained on Reddit posts 

• 27 fine-grained emotions (Cowen and Keltner, 2017) 

or 6 basic emotions (Ekman 1992)
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Question

Can NN-based emotion extraction methods
(GoEmo) outperform established word 

counting methods (LIWC) for predicting 
depression and anxiety?



Comparable features are 
similarly associated

PHQ-9 and GAD-7 score variance explained by the directly comparable 
features obtainable from LIWC, GoEmotions (Ekman set), and GoEmotions 

(fine-grained set)



Slopes and variance 
explained. 
PHQ-9 and GAD-7 score 
univariate mixed-effects 
linear regression models 
coefficients (slopes) with 
95% confidence interval 
and variance explained. 
Variables that were not 
significant (p≥0.05) are 
shown in gray. 

GoEmo 
captures 
clinically 
relevant 
nuance



GoEmo 
captures 
clinically 
relevant 
nuance
Slopes and variance 
explained. 
PHQ-9 and GAD-7 score 
univariate mixed-effects 
linear regression models 
coefficients (slopes) with 
95% confidence interval 
and variance explained. 
Variables that were not 
significant (p≥0.05) are 
shown in gray. 



Feature 
importance 
differs between 
depression and 
anxiety



Feature 
importance 
differs between 
depression and 
anxiety



Feature 
importance 
differs between 
depression and 
anxiety



GoEmotions features are collectively 
more predictive than other feature sets

MDD GAD

ROC F1 Pr Rc ROC F1 Pr Rc

LIWC non-emo 0.577 0.413 0.525 0.341 0.549 0.290 0.478 0.209

LIWC emo 0.621 0.471 0.561 0.405 0.613 0.405 0.541 0.324

GoEmo Ekman 0.643 0.493 0.583 0.427 0.643 0.443 0.550 0.371

GoEmo Cowen 0.662 0.522 0.613 0.455 0.652 0.444 0.565 0.366

LIWC non-emo+

LIWC emo 0.640 0.484 0.569 0.420 0.617 0.401 0.529 0.324

GoEmo Ekman 0.655 0.498 0.585 0.434 0.637 0.441 0.548 0.369

GoEmo Cowen 0.671 0.514 0.615 0.441 0.654 0.451 0.568 0.374

All three 0.671 0.520 0.612 0.453 0.657 0.456 0.567 0.382



Summary & Conclusion
Can NN-based emotion extraction methods (GoEmo) 
outperform established word counting methods (LIWC)?
1. LIWC’s emotion features are as strongly associated as GoEmotions 

features → still be a good choice.

2. GoEmotions features capture emotional state comprehensively, 
yielding additional clinically relevant nuance and benefiting 
predictive performance



Summary & Conclusion
• Limitations: Non-diverse patient sample (79% ≤ 35 y.o., 79% female, 

75% BS or higher)

• Future work: Clinical decision support tools. Interpretability is key: 
models based on interpretable emotion features are preferred over 
black-box models

• Ethics: Monitoring may be considered invasive - informed consent is 
paramount. Further research & applications must take ethical 
considerations into account.
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