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Introduction
COVID-19 has claimed >500,000 U.S. lives(Dong, Du, and Gardner 2020).
Electronic health record (EHR) data is a promising resource for COVID-19 symptom research.
Symptom data are stored in multiple locations within the EHR, requiring multiple extraction
methods. We compared the symptom detection rates of three extraction methods to assess the
comparative utility of each EHR-source of COVID-19 related symptoms.

Methods
Associated symptoms were extracted from EHR data for all SARS CoV-2 tests through May 31,
2020 conducted by a single large healthcare system in WA. Three methods were used:

1. ICD-10 codes  (structured symptom & diagnosis data documented for medical
billing),

2. regular expression matching of notes utilizing the health system’s COVID-19
screening note template, and

3. a previously reported and evaluated Natural Language Processing (NLP) pipeline
(Yetisgen et al. 2016; uw-bionlp n.d.) applied to clinical notes.

ICD codes, NLP, and pattern parsing outputs were matched to one (or none) of 11 symptoms.
Presence or absence of each symptom in the 10 days prior to SARS CoV-2 PCR lab test was
determined for each of the 3 extraction methods
To validate NLP performance, automatically extracted symptoms were compared to manual
annotations in a small sample of notes.

Results
32,924 COVID-19 tests were conducted for 25,115 unique patients between February 29 and May
31, 2020 (5.9% positive).
The 3 sources yielded COVID-19 related symptoms at di�erential rates.
On average, tested patients had 1.1 (SD 1.9) symptoms documented within 10 days before a
SARS CoV-2 PCR test, with myalgia (21.9%) being the most common. 65.4% of tests had no
associated symptoms identified (Figure 1).
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Figure 1: Percentage of tests where the patient had the symptom recorded in the prior 10 days.
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Figure 2: COVID-19 related symptom totals and overlap between extraction methods.

NLP detected the most symptoms (88.2% of all symptoms). 66.5% were detected only by NLP
(Figure 2, Figure 3).
The ICD data source added 3,554 (10.0%) symptoms that were not already captured by NLP,
and the regular expression parsing added 636 (1.8%) more symptoms (Figure 3).
In a small sample of 10 manually annotated notes, NLP demonstrated an average sensitivity of
79% and an average specificity of 77%.
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Figure 3: Number of new symptoms indentified by adding sources in the shown order.

Discussion & Conclusion
All three extraction methods added unique symptoms. NLP detected the large majority of
symptoms. Template parsing detected the least.
Parsing the standardized COVID-19 screening template was simple and accurate; however, the
template was used infrequently, and NLP also found most of the template-derived symptoms.
NLP captured more symptoms than ICD codes, because clinical narrative may be more
detailed and capture information peripheral to the chief complaint. However, more false
positives should be expected from NLP than structured data.
Structured data alone may miss a significant amount of symptom data.
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